Abstract

Dolphins are well known as excellent swimmers for being capable of efficient cruising and sharp acceleration. While studies of the thrust production and power consumption of dolphin swimming have been the main subject for decades, time-varying acceleration process during successive fluke beats still remains poorly understood. In this study, we quantified the time-varying kinematics of a dolphin (Lagenorhynchus obliquidens) by directly recording its burst-accelerating swimming before vertical jump in an aquarium with two synchronized high-speed video cameras. We tracked the three-dimensional trajectories of its beak, body sides, and fluke. We found that dolphin could quickly accelerate from 5.0 m s-1 to 8.7 m s-1 merely by 5 strokes (i.e. 2.5 fluke beats) in 0.7 seconds. During the strokes, it was further found that the dolphin demonstrated a great acceleration in downstroke but less acceleration or even a slight deceleration in upstroke. Hydrodynamic forces and thrust power for each stroke were further estimated based on the equation of body motion and a static hydrodynamic model. The drag coefficient of the dolphin was estimated through computational fluid dynamics (CFD) modeling of the steady flows around a realistic geometric model based on 3-D scan data. The thrust and thrust power were then calculated by combining the body kinematics and the drag coefficient, resulting in a maximum stroke-averaged thrust and power-to-mass ratio of 1.3 × 103 N and 90 W kg-1 at downstroke, and 3.3 × 102 N and 19 W kg-1 at upstroke, respectively. Our results point out the importance of asymmetric kinematics in burst acceleration of dolphin, which may be a useful mechanism for biomimetic design of high-performance underwater robots.

Highlights

  • Dolphins are well known for their excellent swimming ability, as demonstrated by high-speed swimming, porpoising, acrobatic jumping, and tail standing

  • We recorded the motion of a female Pacific white-sided dolphin (Lagenorhynchus obliquidens) performing a vertical high jump in an aquarium (Yokohama Hakkeijima Sea Paradise, Yokohama, Japan) on December 14, 2012

  • Fish and Rohr (1999) broadly summarized the swimming speeds of various dolphins, including both reliable and non-reliable data; two records were listed for Lagenorhynchus obliquidens for short-duration high-speed swimming [13]

Read more

Summary

Introduction

Dolphins are well known for their excellent swimming ability, as demonstrated by high-speed swimming, porpoising, acrobatic jumping, and tail standing. Dolphins demonstrate remarkably rapid acceleration from low speed to top speed. The hydrodynamics and energetics behind their high-speed swimming performance has attracted broad attention of both scientists and the public over decades. Kinematics of a dolphin in burst accelerating swimming the manuscript. The specific roles of these authors are articulated in the ‘Author contributions’ section

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.