Abstract

We present a measurement of the relativistic corrections to the thermal Sunyaev–Zel’dovich (SZ) effect spectrum, the rSZ effect, toward the massive galaxy cluster RX J1347.5-1145 by combining submillimeter images from Herschel-SPIRE with millimeter wavelength Bolocam maps. Our analysis simultaneously models the SZ effect signal, the population of cosmic infrared background galaxies, and the galactic cirrus dust emission in a manner that fully accounts for their spatial and frequency-dependent correlations. Gravitational lensing of background galaxies by RX J1347.5-1145 is included in our methodology based on a mass model derived from the Hubble Space Telescope observations. Utilizing a set of realistic mock observations, we employ a forward modeling approach that accounts for the non-Gaussian covariances between the observed astrophysical components to determine the posterior distribution of SZ effect brightness values consistent with the observed data. We determine a maximum a posteriori (MAP) value of the average Comptonization parameter of the intracluster medium (ICM) within R 2500 to be 〈y〉2500 = 1.56 × 10−4, with corresponding 68% credible interval [1.42, 1.63] × 10−4, and a MAP ICM electron temperature of 〈T sz〉2500 = 22.4 keV with 68% credible interval spanning [10.4, 33.0] keV. This is in good agreement with the pressure-weighted temperature obtained from Chandra X-ray observations, 〈T x,pw〉2500 = 17.4 ± 2.3 keV. We aim to apply this methodology to comparable existing data for a sample of 39 galaxy clusters, with an estimated uncertainty on the ensemble mean 〈T sz〉2500 at the ≃ 1 keV level, sufficiently precise to probe ICM physics and to inform X-ray temperature calibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.