Abstract

Prior studies of Alloy 600 and Alloy X-750 have shown the existence of a maximum in stress corrosion cracking (SCC) susceptibility in high temperature water (e.g., at 360 C), when testing is conducted over a range of dissolved (i.e., aqueous) hydrogen (H{sub 2}) concentrations. It has also been shown that this maximum in SCC susceptibility tends to occur in proximity to the nickel/nickel oxide (Ni/NiO) phase transition, suggesting that oxide phase stability may affect primary water SCC (PWSCC) resistance. Previous studies have estimated the Ni/NiO transition using thermodynamic calculations based on free energies of formation for NiO and H{sub 2}O. The present study reports experimental measurements of the Ni/NiO transition performed using a contact electric resistance (CER) instrument. The CER is capable of measuring the surface resistance of a metal to determine whether it is oxide-covered or oxide-free at a given condition. The transition aqueous hydrogen (H{sub 2}) concentration corresponding to the Ni/NiO equilibrium was measured at 288, 316, 338 and 360 C using high purity Ni specimens. The results showed an appreciable deviation (i.e., 7 to 58 scc H{sub 2}/kg H{sub 2}O) between the measured Ni/NiO transition and the theoretical Ni/NiO transition previously calculated using free energy data from the Journal of Solution Chemistry. The CER-measured position of the Ni/NiO transition is in good agreement with the maxima in PWSCC susceptibility at 338 and 360 C. The measured Ni/NiO transition provides a reasonable basis for estimating the aqueous H{sub 2} level at which the maximum in SCC susceptibility is likely to be observed at temperatures lower than 338 to 360 C, at which SCC tests are time-consuming to perform. Limited SCC data are presented which are consistent with the observation that SCC susceptibility is maximized near the Ni/NiO transition at 288 C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.