Abstract

We report on measurements of the photon-induced heating of silica nanospheres levitated in a vacuum by a thermal light source formed by a superluminescent diode. Heating of the nanospheres motion along the three trap axes was measured as a function of gas pressure for two particle sizes and recoil heating was shown to dominate other heating mechanisms due to relative intensity noise and beam pointing fluctuations. Heating rates were also compared with the much lower reheating of the same sphere when levitated by a laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.