Abstract

We performed a measurement of the ionization response of 200 μm-thick amorphous selenium (aSe) layers under drift electric fields of up to 50 V/μm.The aSe target was exposed to ionizing radiation from a 57Co radioactive source and the ionization pulses were recorded with high resolution.Using the spectral line from the photoabsorption of 122 keV γ rays, we measured the charge yield in aSe and the line width as a function of drift electric field.From a detailed microphysics simulation of charge generation and recombination in aSe, we conclude that the strong dependence of recombination on the ionization track density provides the dominant contribution to the energy resolution in aSe.These results provide valuable input to estimate the sensitivity of a proposed next-generation search for the neutrinoless ββ decay of 82Se that aims to employ imaging sensors with an active layer of aSe.We estimate the RMS line width of the integrated ionization signal from neutrinoless ββ decay events (of deposited energy 3.0 MeV) to be 2.0% for a drift field of 50 V/μm.The energy resolution can be improved to 1% by correcting for the charge yield as a function of ionization density along the imaged electron tracks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.