Abstract

As a strategic new material with excellent performance, carbon fiber has attracted much attention in the wood structure industry. In this paper, the test modal and computational modal analysis methods are used to study the mode shape and modal parameters of carbon fiber board, calculate the elastic constants, i.e., the elastic modulus, shear modulus, and Poisson’s ratio, and analyze the coupling of the results. The conclusions show that the numerical results of the mode shape and elastic constants of the carbon fiber board obtained via the computational modal and test modal analysis are highly coupled. The first-order bending and first-order torsional modes of the carbon fiber board obtained via the two analysis methods are consistent, and the frequency error rate is less than 5%. The error rates of the elastic modulus and shear modulus are 0.7% and 7.8%, respectively. In addition, the research is conducive to strengthening the work of finite element computational modal analysis, and better promoting the application of non-destructive testing and quality grading of carbon fiber board. The above-mentioned optimization design work for improving the dynamic characteristics of carbon fiber board, and further research on the detection and optimization of the performance when the carbon fiber material is combined with wood, also has engineering application value for promoting the faster development of the wood structure market.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.