Abstract

OH density and rotational temperature were measured in a saturated water vapor slot-excited microwave plasma using spatio-temporally resolved laser-induced fluorescence. The microwave power was 20–100 W under continuous wave mode, whereas 40–200 W peak under pulse-modulated mode (30% duty cycle, 100 Hz). The water vapor pressure was 2.3 kPa. An approximately 2 mm thick flat-shaped plasma was generated on the surface of a slot antenna. The OH density and rotational temperature in the plasma ranged from 1 × 1014 cm−3 to 1 × 1015 cm−3 and from 1100 K to 3000 K, respectively. OH was produced via various routes originating from electron collisions (e + H2O) and was primarily lost through recombination (OH+OH → H2O+O) and diffusion. The production rate (k p ) of OH per H2O molecule, which was calculated based on a simplified reaction model using the measured OH density and temperature, showed a relation of , where P represents the microwave power. This relationship implies a two-step production process of OH via the vibrational excitation of H2O. Although the OH density increased with increasing microwave power, the density became saturated at high power values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.