Abstract

The use of new silicon single crystals highly enriched in 28Si recently produced for the upcoming redetermination of the Avogadro constant requires knowledge of their molar masses. The isotopic composition data are collected independently in different laboratories but all using the virtual element technique with multicollector inductively coupled plasma mass spectrometers. In this framework, the comparison of the results with an independent measurement of the amount of at least one of the depleted isotopes is useful to limit hidden systematic errors. To this aim, the 30Si mole fraction of a sample of the new material was measured using a relative measurement protocol based on instrumental neutron activation analysis. The protocol is similar to that previously applied with the AVO28 silicon material used for the last determination of the Avogadro constant value with the exception that unknown and standard samples are not coirradiated. The x(30Si) = 5.701 × 10-7 mol mol-1 estimate is close to the expected one and is given with a standard uncertainty of 8.8 × 10-9 mol mol-1. This value, if adopted, gives a contribution to the relative standard uncertainty of the Avogadro constant of 6.3 × 10-10.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.