Abstract
Visualization and quantification of surface topography and stresses from measured slope data is of considerable importance to study many engineering problems including response of structural plates to stress wave loading. In this work, a full-field optical technique called Digital Gradient Sensing (DGS) is implemented in the reflection-mode to quantify time-resolved surface slopes in composite plates at microsecond intervals as they are impact loaded. The method being capable of determining two orthogonal surface slopes by measuring angular deflections of light rays, as small as a few micro-radians, surface topography can be quantified using a Higher-order Finite-difference-based Least-squares Integration (HFLI). Numerical differentiation of surface slopes, on the other hand, provides all three curvatures enabling estimation of stresses. Carbon fiber reinforced composite plates of different layups are subjected to dynamic impact loading using a Hopkinson pressure bar. Ultrahigh-speed digital photography is used to record deformations using DGS. The out-of-plane deformations are obtained by post-processing data from DGS at each time instant using HFLI whereas stresses are estimated by evaluating instantaneous curvatures obtained by differentiating measured slopes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.