Abstract
New experimental schemes to measure spin-lattice relaxation times T1 on the basis of inversion-recovery and saturation-recovery experiments with longitudinal detection are introduced. With this approach, paramagnetic species with T1 values as short as 20 ns can be measured. Possibilities to reduce unwanted signals and instrumental artifacts are analyzed. An experiment where the signal is induced directly by the time-dependent M2 magnetization is also proposed. Experimental results for organic radicals and defect centers are presented and compared with data obtained with conventional techniques, and a metal complex at 250 K is analyzed where it is very difficult to get information about relaxation times with established methods because of fast spin-spin relaxation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.