Abstract
We calibrate the secondary electron signal from a standard scanning electron microscope to voltage, yielding an image of the surface or near-surface potential. Data on both atomically abrupt heterojunction GaInP/GaAs and diffused homojunction Si solar cell devices clearly show the expected variation in potential with position and applied bias, giving depletion widths and locating metallurgical junctions to an accuracy better than 10 nm. In some images, distortion near the p-n junction is observed, seemingly consistent with the effects of lateral electric fields (patch fields). Reducing the tube bias removes this distortion. This approach results in rapid and straightforward collection of near-surface potential data using a standard scanning electron microscope.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.