Abstract
Iron is mostly bound to poorly characterised organic ligands; thus, organic ligands are paramount in defining Fe biogeochemical cycling and its control on oceanic primary productivity. Since 1994, Fe chemical speciation has been determined by Competitive Ligand Exchange–Adsorptive Cathodic Stripping Voltammetry (CLE–AdCSV) at room temperature. However, chemical speciation is strongly dependent on temperature and some organic ligands can be temperature sensitive. Here, we compare the use of the CLE–AdCSV at room temperature and at 4°C—a temperature closer to that found in the Southern Ocean, one of the largest iron-limited regions. For both temperatures, similar detection limits and total Fe concentrations were found. However, at 4°C the analytical detection window (αFe(TAC)2) was shifted by 1.4-fold towards the detection of weaker ligands, resulting in up to 2-fold lower ligand concentrations as well as a 2- to 5-fold and 10- to70-fold lower conditional stability constants with inorganic Fe (Fe′) and Fe(III), respectively. As a result, the Fe′ concentration at 4°C was 2-fold greater, resulting in direct implication for Fe bioavailability. Results show that difference in Fe chemical speciation at 4°C was not solely explained by temperature effect on thermodynamics with the exchange ligands or the diffusion of the electroactive complex towards the Hg drop. Lowering analytical window during analysis at room temperature is proposed as a first estimate of temperature effect on iron chemical speciation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.