Abstract

Direct frequency comb spectroscopy is currently one of the most precise techniques for studying the internal structure of atomic and molecular systems. In this technique, a train of ultrafast laser pulses excites states in the target system which then relax, emitting fluorescence. The measured fluorescence is then plotted as a function of the comb parameters. But according to recent theory, the ultrashort pulses from the comb laser can also significantly ionize the target. Here, we test this theory by measuring the ion signal from direct frequency comb spectroscopy. Furthermore, instead of actively controlling the frequency comb parameters, we allow them to drift passively, measuring them and the ion signal simultaneously. The experiments were found to be in satisfactory agreement with theory, and the passive comb approach was found to be functional, though not as convenient as the conventional actively locked comb.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.