Abstract

A 60 Hz alternating current excited atmospheric-pressure plasma with an ultrahigh electron density of over 1016 cm-3 employing H2/Ar [ p(H2)/p(H2+Ar) 1–3%] gases was used to reduce copper oxides on copper. The remote plasma reduced CuO and Cu2O at room temperature. The ground-state hydrogen (H) radical density in the atmospheric-pressure plasma was measured by vacuum ultraviolet absorption spectroscopy using a micro hollow cathode lamp. The ratio of reduction of amount of CuO flux to the H radical flux was determined from the measured H radical density and gas temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.