Abstract
A new facility has been built for experimental study on microchannel and introduced in this paper. Six heat transfer coefficient and six pressure drop measurements can be conducted simultaneously in one pass from vapor quality of 0 to 1 on the facility. Two water-jacket-design heat exchangers are placed top and bottom on each test section for heating the refrigerant. In each test section, the top and bottom sides are heated and controlled separately to ensure uniform conditions. The environmental heat loss and wall temperature measurements are corrected to increases confidence of results. Port geometry is measured with an optical microscope. Heat transfer coefficient and pressure drop of R134a are measured in a 24-port microchannel tube. The single-phase pressure drop follows the rule of round tube and fRe is 64. The single-phase Nusselt number is more sensitive to Reynolds number, compared to large tubes. As vapor quality increases, two-phase pressure drop increases until quality of 0.9, and then stops increasing or even drops; two-phase heat transfer coefficient increases until quality of 0.5 to 0.6 and then drops. Higher mass flux or lower saturation temperature will increase the pressure drop. Heat flux and mass flux have strong impact on heat transfer coefficient, and the effect of saturation temperature is not clear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.