Abstract

It is well known that a rotating superconductor produces a magnetic field proportional to its angular velocity. The authors conjectured earlier, that in addition to this so-called London moment, also a large gravitomagnetic field should appear to explain an apparent mass increase of Niobium Cooper-pairs. A similar field is predicted from Einstein's general relativity theory and the presently observed amount of dark energy in the universe. An experimental facility was designed and built to measure small acceleration fields as well as gravitomagnetic fields in the vicinity of a fast rotating and accelerating superconductor in order to detect this so-called gravitomagnetic London moment. This paper summarizes the efforts and results that have been obtained so far. Measurements with Niobium superconductors indeed show first signs which appear to be within a factor of 2 of our theoretical prediction. Possible error sources as well as the experimental difficulties are reviewed and discussed. If the gravitomagnetic London moment indeed exists, acceleration fields could be produced in a laboratory environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.