Abstract

Gas shale reservoirs pose unique measurement challenges due to their ultra-low petrophysical properties and complicated pore structures. A small variation in an experimental parameter, under high-pressure conditions, may result in huge discrepancies in gas contents and the resource estimates derived from such data. This study illustrates the impact of the equation of state on the gas content determined for a shale sample. The gas content was determined from laboratory-measured high-pressure methane adsorption isotherms and theoretically described by a hybrid type model. The modelling involved the use of the Dubinin–Radushkevich isotherm to obtain the adsorbed phase density followed by the Langmuir isotherm to describe the resultant absolute adsorptions. Significant variations were observed in measured adsorption isotherms due to the variations in gas densities calculated from different equations of states. The model parameters and the gas in-place volumes estimated from those parameters also varied significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.