Abstract

We present an optimized technique for the measurement of gain and losses of semiconductor lasers. We optically inject the beam of a distributed feedback laser (DFB) inside the cavity of the lasers under study. The DFB laser operates in a pulsed mode and shifts its emission wavelength as a function of time. This frequency chirp creates the Fabry–Pérot fringes of the transmitted intensity that contains all the information on the cavity losses. The setup has been validated by a quantitative study of the losses as a function of the injected current, for a quantum cascade laser emitting at 7.6 μm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.