Abstract

Snow interception in a coniferous stand leads to considerable short-range variability in snowcover depth, which in turn affects the water and heat regime of the soil. To study the coupling between snow accumulation, frost penetration, and hydrological response, plot-scale experiments were conducted in a subalpine spruce forest. The stony, sandy-loamy Spodosol was highly permeable and had an organic layer of 5-15 cm thickness. Within two plots, one underneath a tree crown and one in a canopy gap, we measured near-surface runoff, soil temperature, and liquid water content. Snow and frost depths varied more in space than between two winter periods at given locations. Frost penetration was greater near the trunk, where a higher portion of snowmelt water drained downslope close to the surface than in the gap due to frost-induced reduction of infiltration. In both years, the spring snowmelt occurred over two distinct periods. During the first snowmelt, the water percolated primarily through the frozen layer and part of it probably refroze within the frozen layer, thereby raising the total water and ice content. During the second event, near-surface runoff was more pronounced.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.