Abstract

Temporally and spatially resolved laser-induced breakdown spectroscopy (LIBS) was applied to a four-stroke, single-cylinder test engine’s cyclic exhaust gas to demonstrate engine performance. The LIBS technique provided quantitative air-to-fuel ratio (A/F) measurements by generating localized breakdown plasma during the compression and exhaust strokes. The results showed that the timing and duration settings of the emission energy ionization and molecular spectra affect the intensity peaks. Optimum measurements performed between 200 ns and 10 ms after breakdown resulted in observed atomic spectra of CI (248 nm), Hβ (485 nm), Hα (656 nm), NI (745, 824 nm), and OI (777, 844 nm). The intensities of CI (248 nm) and Hα (656 nm) decreased with increasing A/F, whereas the intensity ratios of NI and OI remained constant. A decrease in the intensity ratio of C/O and Hα/O was observed as the A/F increased. This study is a major step toward defining a means of using LIBS to control the A/F ratio in gasoline engines by focusing on the exhaust gas rather than the flame.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.