Abstract

An experimental method is proposed to determine the frequency-dependent complex shear viscosity of liquids based on the quartz crystal microbalance with dissipation method. An AT-cut quartz transducer without metal electrodes is immersed in a sample liquid and the transducer is electrically coupled to the circuit through the dielectric response of the sample itself. After correcting for the apparent change in the resonance properties due to the dielectric coupling of the sample, our method is able to determine the viscosity of liquids of high polarity and low viscosity at frequencies as high as 3 GHz. The method was then applied to ethylene glycol and the viscoelastic relaxation in the GHz regime was observed. Furthermore, it was also applied to room-temperature ionic liquids to show that the dielectric correction of the resonance properties is valid for conductive liquids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.