Abstract

A set of TROSY-HNCO (tHNCO)-based 3D experiments is presented for measuring (15)N relaxation parameters in large, membrane-associated proteins, characterized by slow tumbling times and significant spectral overlap. Measurement of backbone (15)N R (1), R (1rho), (15)N-{(1)H} NOE, and (15)N CSA/dipolar cross correlation is demonstrated and applied to study the dynamic behavior of the homotetrameric KcsA potassium channel in SDS micelles under conditions where this channel is in the closed state. The micelle-encapsulated transmembrane domain, KcsA(TM), exhibits a high degree of order, tumbling as an oblate ellipsoid with a global rotational correlation time, tau(c) = 38 +/- 2.5 ns, at 50 degrees C and a diffusion anisotropy, Dparallel/Dperpendicular = 0.79+/-0.05, corresponding to an aspect ratio a/b >/= 1.4. The N- and C-terminal intracellular segments of KcsA exhibit considerable internal dynamics (S (2) values in the 0.2-0.45 range), but are distinctly more ordered than what has been observed for unstructured random coils. Relaxation behavior in these domains confirms the position of the C-terminal helix, and indicates that in SDS micelles, this amphiphilic helix does not associate into a stable homotetrameric helical bundle. The relaxation data indicate the absence of elevated backbone dynamics on the ps-ns time scale for the 5-residue selectivity filter, which selects K(+) ions to enter the channel.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.