Abstract

On the Moon or Mars, typical target environments for exploration rovers are covered with fine sand, so their wheels easily slip on such weak ground. When wheel slippage occurs, it is hard for the rover to follow its desired route. In the worst case, the rover gets stuck in loose soil and cannot move anymore. To reduce the risk of the rover getting stuck, analysis of the contact mechanics between the soil and wheel is important. Various normal stress distribution models for under the wheel surface have been proposed so far. However, classical models assume a uniform stress distribution in the wheel’s width direction. In this study, we measured the two-dimensional normal stress distribution of a wheel in experiments. The results clarified that the stress distribution in the wheel’s width direction is a mountain-shape curve with a peak located at the center of the wheel. Based on the results, we constructed a stress distribution model for the wheel’s width direction. In this paper, we report our measurements for the two-dimensional stress distribution of a wheel on loose soil and introduce our stress distribution model for the wheel’s width direction based on our experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.