Abstract

ABSTRACTSelective laser melting (SLM) is an additive manufacturing technique which has the capability to produce complex metal parts with almost 100% density and good mechanical properties. Despite the potential benefits of SLM technology, there are technical challenges relating to the qualification and certification of the manufactured parts that limits its application in safety-critical industries, such as aerospace. Material porosity in SLM parts is detrimental for aerospace applications since it compromises structural integrity and could result in premature structural failure of parts. This paper describes the application of the non-destructive X-ray computed tomography (XCT) method to characterize the internal structure to enhance the understanding of the process parameters on material porosity and thus provide quality control of the SLM AlSi10Mg parts. An efficient and reliable XCT image processing procedure that involves image enhancement and ring artefact removal prior to image segmentation is presented. The obtained porosity level is compared with the conventional Archimedes method, showing good agreement. The characteristics of pores, such as shapes and sizes, are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.