Abstract

Abstract. Results are presented from three years (1992‐1995) of a field leaching experiment on a sandy soil in south‐west Sweden. Plots of spring cereals, either with or without an undersown perennial ryegrass catch crop, were compared for nitrogen leaching and nitrogen status in soil. Both treatments were ploughed in spring, and other tillage regimes were also identical. Measurements of nitrogen leaching from drains, nitrogen uptake in crops and mineral nitrogen in the soil were made. Two coupled, simulation models, which describe water flow and nitrogen transformations and transport in soil, were used to interpret data and to calculate the nitrogen budget and nitrogen mineralization in the soil.Nitrogen leaching was 40 50% less in the catch crop treatment compared with the control during years when the establishment of the catch crop succeeded. In the third year of the experiment nitrogen leaching was actually greater in the catch crop treatment (7 kg N/ha). This increase was caused by a poorly established catch crop coinciding with enhanced mineralization of previous catch crop residues. There was no simulated change in soil organic nitrogen in either of the treatments. Simulations showed increased nitrogen mineralization during April‐July after incorporation of plant material in spring, especially in the catch crop treatment. However, the increased nitrogen mineralization probably occurred too late for the released nitrogen to be fully available to the main crop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.