Abstract
A two-component link produces a torus as the product of the component knots in a two-point configuration space of a three-sphere. This space can be identified with a cotangent bundle and also with an indefinite Grassmannian. We show that the integration of the absolute value of the canonical symplectic form is equal to the area of the torus with respect to the pseudo-Riemannian structure, and that it attains the minimum only at the “best” Hopf links.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.