Abstract
We present the mean value cross decomposition algorithm and its simple enhancement for the two-stage stochastic linear programming problem with complete recourse. The mean value cross decomposition algorithm employs the Benders (primal) subproblems as in the so-called L-shaped method but eliminates the Benders master problem for generating the next trial first-stage solution, relying instead upon Lagrangian (dual) subproblems. The Lagrangian multipliers used in defining the dual subproblems are in turn obtained from the primal subproblems. The primal subproblem separates into subproblems, one for each scenario, each containing only the second-stage variables. The dual subproblem also separates into subproblems, one for each scenario which contains both first- and second-stage variables, and additionally a subproblem containing only the first-stage variables. We then show that the substantial computational savings may be obtained by solving at most iterations only the dual subproblem with the first-stage variables and bypassing the termination test. Computational results are highly encouraging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.