Abstract

We consider mean proximality and mean Li–Yorke chaos for [Formula: see text]-systems, where [Formula: see text] is a countable discrete infinite amenable group. We prove that if a countable discrete infinite abelian group action is mean sensitive and there is a mean proximal pair consisting of a transitive point and a periodic point, then it is mean Li–Yorke chaotic. Moreover, we give some characterizations of mean proximal systems for general countable discrete infinite amenable groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.