Abstract

We calculate the free energy density for inhomogeneous electrolytes based on the mean-field Debye-Hückel theory. Derived are the contributions of (1) the differential term for the electrolyte density being slow varying in one direction and (2) the boundary term for an electrolyte confined to one side of a planar interface. These contributions are shown to cause an electrolyte depletion near the air-water interfaces, which makes the surface tension increase, to be significantly larger than those predicted by previous theories. Nonuniform electrolyte densities are also computed near the water-electrolyte and electrolyte-electrolyte interfaces. Finally we calculate the interaction of two uncharged macrospheres due to the electrolyte depletion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.