Abstract
Abstract. We present in this paper iterative estimation procedures, using conditional expectations, to fit linear models when the distributions of the errors are general and the dependent data stem from a finite number of sources, either grouped or non‐grouped with different classification criteria. We propose an initial procedure that is inspired by the expectation‐maximization (EM) algorithm, although it does not agree with it. The proposed procedure avoids the nested iteration, which implicitly appears in the initial procedure and also in the EM algorithm. The stochastic asymptotic properties of the corresponding estimators are analysed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.