Abstract

Biocompatible peptide dendrimers and dendrigrafts have useful properties for application in biomedicine. In previous papers the computational approach for study lysine dendrimers and dendrigrafts as well as their complexes with various medical peptides was used. In this paper the comparison of complex formation between molecules of therapeutic AEDG tetrapeptide and novel K2R peptide dendrimer or DG2 dendrigraft of near the same size and charge was fulfilled. The systems consisting of 16 therapeutic AEDG tetrapeptide molecules and one dendrimer or one dendrigraft were studied by molecular dynamics simulation. Full atomic models of these molecules in water with explicit counterions were used for this goal. First of all, the process of complex formation was studied. It was obtained that peptide molecules were attracted by both branched molecules and were quickly adsorbed by them. Times of complexes formation as well as size, anisotropy and structure of each complex were calculated. It was demonstrated that both K2R dendrimer and DG2 dendrigraft are effective for complexation of these peptide molecules but new dendrimer complex is more stable than dendrigraft complex because it has almost twice more hydrogen bonds with peptide molecules and 33% more ion pairs with their charged groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.