Abstract

Social network alignment, identifying social accounts of the same individual across different social networks, shows fundamental importance in a wide spectrum of applications, such as link prediction and information diffusion. Individuals more often than not join in multiple social networks, and it is in fact much too expensive or even impossible to acquiring supervision for guiding the alignment. To the best of our knowledge, few method in the literature can align multiple social networks without supervision. In this article, we propose to study the problem of unsupervised multiple social network alignment. To address this problem, we propose a novel unsupervised model of joint Matrix factorization with a diagonal Cone under orthogonal Constraint, referred to as MC 2 . Its core idea is to embed and align multiple social networks in the common subspace via an unsupervised approach. Specifically, in MC 2 model, we first design a matrix optimization to infer the common subspace from different social networks. To address the nonconvex optimization, we then design an efficient alternating algorithm by leveraging its inherent functional property. Through extensive experiments on real-world datasets, we demonstrate that the proposed MC 2 model significantly outperforms the state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.