Abstract
ABSTRACTHeckman's (1976, 1979) sample selection model has been employed in many studies of linear and nonlinear regression applications. It is well known that ignoring the sample selectivity may result in inconsistency of the estimator due to the correlation between the statistical errors in the selection and main equations. In this article, we reconsider the maximum likelihood estimator for the panel sample selection model in Keane et al. (1988). Since the panel data model contains individual effects, such as fixed or random effects, the likelihood function is more complicated than that of the classical Heckman model. As an alternative to the existing derivation of the likelihood function in the literature, we show that the conditional distribution of the main equation follows a closed skew-normal (CSN) distribution, of which the linear transformation is still a CSN. Although the evaluation of the likelihood function involves high-dimensional integration, we show that the integration can be further simplified into a one-dimensional problem and can be evaluated by the simulated likelihood method. Moreover, we also conduct a Monte Carlo experiment to investigate the finite sample performance of the proposed estimator and find that our estimator provides reliable and quite satisfactory results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.