Abstract

The power generation subsystem represents one of the principal components of a space system and is usually assembled from solar arrays and PPT topology. This paper aims to design and implement an algorithm to continuously extract the maximum power from the solar cells and deliver it to the consumer with minimum loss. In this regard, a brief introduction to the various parts of the power generation subsystem is provided and through accurate modeling of the solar cell and exploring the contributing factors to its power generation (including temperature, radiation, and space radiation), the algorithm is proposed based on the impedance matching concept. Simulation studies using MATLAB software have estimated an approximate 0.25065W per square centimeter power extraction and delivery to the customer. Our results suggest that the proposed approach can reduce steady-state losses while ensuring accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.