Abstract

As a model of the second order elliptic equation with non-trivial boundary conditions, we consider the Laplace equation with mixed Dirichlet and Neumann boundary conditions on convex polygonal domains. Our goal is to establish that finite element discrete harmonic functions with mixed Dirichlet and Neumann boundary conditions satisfy a weak (Agmon---Miranda) discrete maximum principle, and then prove the stability of the Ritz projection with mixed boundary conditions in $$L^\infty $$L? norm. Such results have a number of applications, but are not available in the literature. Our proof of the maximum-norm stability of the Ritz projection is based on converting the mixed boundary value problem to a pure Neumann problem, which is of independent interest.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.