Abstract

Based on the generalized uncertainty principle with maximum momentum and minimal length, we discuss the equation of state of ideal ultra-relativistic Fermi gases at zero temperature. Maximum momentum avoids the problem that the Fermi degenerate pressure blows up since the increase of the Fermi energy is not limited. Applying this equation of state to the Tolman–Oppenheimer–Volkoff (TOV) equation, the quantum gravitational effects on the cores of compact stars are discussed. In the center of compact stars, we obtain the singularity-free solution of the metric component, gtt ∼ – (1 + 0.2185 × r2). By numerically solving the TOV equation, we find that quantum gravity plays an important role in the region r ∼ 104α0(Δx)min. Current observed masses of neutron stars indicate that the dimensionless parameter α0 cannot exceed 1019.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.