Abstract
Univariate partial least squares regression (PLS1) is a method of modeling relationships between a response variable and explanatory variables, especially when the explanatory variables are almost collinear. The purpose is to predict a future response observation, although in many applications there is an interest to understand the contributions of each explanatory variable. It is an algorithmic approach. In this article, we are going to use the algorithm presented by Helland (1988). The population PLS predictor is linked to a linear model including a Krylov design matrix and a two-step estimation procedure. For the first step, the maximum likelihood approach is applied to a specific multivariate linear model, generating tools for evaluating the information in the explanatory variables. It is shown that explicit maximum likelihood estimators of the dispersion matrix can be obtained where the dispersion matrix, besides representing the variation in the error, also includes the Krylov structured design matrix describing the mean.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.