Abstract
Optimal treatment of infants with many renally cleared drugs must account for maturational differences in renal transporter (RT) activity. Pediatric physiologically-based pharmacokinetic (PBPK) models may incorporate RT activity, but this requires ontogeny profiles for RT activity in children, especially neonates, to predict drug disposition. Therefore, RT expression measurements from human kidney postmortem cortical tissue samples were normalized to represent a fraction of mature RT activity. Using these data, maximum likelihood estimated the distributions of RT activity across the pediatric age spectrum, including preterm and term neonates. PBPK models of four RT substrates (acyclovir, ciprofloxacin, furosemide, and meropenem) were evaluated with and without ontogeny profiles using average fold error (AFE), absolute average fold error (AAFE), and proportion of observations within the 5-95% prediction interval. Novel maximum likelihood profiles estimated ontogeny distributions for the following RT: OAT1, OAT3, OCT2, P-gp, URAT1, BCRP, MATE1, MRP2, MRP4, and MATE-2 K. Profiles for OAT3, P-gp, and MATE1 improved infant furosemide and neonate meropenem PBPK model AFE from 0.08 to 0.70 and 0.53 to 1.34 and model AAFE from 12.08 to 1.44 and 2.09 to 1.36, respectively, and improved the percent of data within the 5-95% prediction interval from 48% to 98% for neonatal ciprofloxacin simulations, respectively. Even after accounting for other critical population-specific maturational differences, novel RT ontogeny profiles substantially improved neonatal PBPK model performance, providing validated estimates of maturational differences in RT activity for optimal dosing in children.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.