Abstract

For orthogonal space-time block coded orthogonal frequency division multiplexing (OSTBC-OFDM) systems, many of the existing blind detection and channel estimation methods rely on the assumption that the channel is static for many OSTBC-OFDM blocks. This paper considers the blind (semiblind) maximum-likelihood (ML) detection problem of OSTBC-OFDM with a single OSTBC-OFDM block only. The merit of such an investigation is the ability to accommodate channels with shorter coherence time. We examine both the implementation and identifiability issues, with a focus on BPSK or QPSK constellations. In the implementation, we propose reduced-complexity detection schemes using subchannel grouping. In the identifiability analysis, we show that the proposed schemes can ensure a probability one identifiability condition using very few number of pilots. For example, the proposed semiblind detection scheme only requires a single pilot code for unique data identification; while the conventional pilot-based channel estimation method requires L pilots where L denotes the channel length. Our simulation results demonstrate that the proposed schemes can provide performance close to that of their nonblind counterparts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.