Abstract

ABSTRACT In a rational model, some terms of the information vector are correlated with the noise, which makes the traditional least squares based iterative algorithms biased. In order to overcome this shortcoming, this paper develops two recursive algorithms for estimating the rational model parameters. These two algorithms, based on the maximum likelihood principle, have three integrated key features: (1) to establish two unbiased maximum likelihood recursive algorithms, (2) to develop a maximum likelihood recursive least squares (ML-RLS) algorithm to decrease the computational efforts, (3) to update the parameter estimates by the ML-RLS based particle swarm optimisation (ML-RLS-PSO) algorithm when the noise-to-output ratio is large. Comparative studies demonstrate that (1) the ML-RLS algorithm is only valid for rational models when the noise-to-output ratio is small, (2) the ML-RLS-PSO algorithm is effective for rational models with random noise-to-output ratio, but at the cost of heavy computational efforts. Furthermore, the simulations provide cases for potential expansion and applications of the proposed algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.