Abstract

The elastic maximum equivalent stress in a pin-loaded, straight- or taper-shanked, round-ended lug subject to inclined loading is investigated using the finite element and the boundary element methods, and, partly, photoelasticity. The influence of the load direction, of the ratio between the bore diameter and lug width, and of the shank taper angle are particularly addressed. In addition, the effects of the axial length of the lug trunk and, partially, of the initial clearance between the lug bore and pin are numerically examined in the presence of a loading variously inclined to the lug axis. An interpolating expression for the maximum equivalent stress as a function of the ratio between the bore diameter and lug width, taper angle, and load inclination angle is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.