Abstract

Abstract An extensive statewide data set for seven conifer and eight hardwood species commonly occurring in Maine was used in the development of maximum and largest crown width equations. To establish the characteristics of open-grown trees, quantile regression was used to estimate the biological maximum crown width for a species at a given diameter. To predict crown widths of trees in forested settings, a constrained nonlinear equation was used, using the predicted maximum crown width, tree diameter, and crown ratio. The models performed well across the wide range of stand conditions present in the data set and improved predictions over the currently used crown width equations for most species (reduction of mean absolute error ranged from 1 to 23%). In general, predictions of largest crown width were not greatly improved with the inclusion of crown ratio, and there was a high amount of unexplained variation for shade-tolerant hardwood species, such as American beech (Fagus grandifolia) and sugar maple (Acer saccharum). The equations presented herein can be used in examining tree crown profiles, computing measurements of stand density, and investigating canopy dynamics for species common to the forests of Maine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.