Abstract

We investigate wireless powered communication networks in an interference channel. In this system, due to asymmetric time allocation of the downlink and the uplink among multiple cells, cross-link interference may occur, which significantly affects overall performance. Considering this interference issue, we study a minimum rate maximization problem to overcome a severe imbalance on a rate distribution among users. The minimum rate maximization problem is non-convex; thus we propose an algorithm that updates the time allocation and the users’ transmit power based on the Lagrangian duality method and the Perron–Frobenius theorem, respectively. Simulation results verify that the proposed methods outperform conventional schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.