Abstract

<p style='text-indent:20px;'>We study discrete time maximal regularity in Lebesgue spaces of sequences for time-stepping schemes arising from Lubich's convolution quadrature method. We show minimal properties on the quadrature weights that determines a wide class of implicit schemes. For an appropriate choice of the weights, we are able to identify the <inline-formula><tex-math id="M1">\begin{document}$ \theta $\end{document}</tex-math></inline-formula>-method as well as the backward differentiation formulas and the <inline-formula><tex-math id="M2">\begin{document}$ L1 $\end{document}</tex-math></inline-formula>-scheme. Fractional versions of these schemes, some of them completely new, are also shown, as well as their representation by means of the Grünwald–Letnikov fractional order derivative. Our results extend and improve some recent results on the subject and provide new insights on the basic nature of the weights that ensure maximal regularity.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.