Abstract

We consider linear systems of equations A(p)x=b(p), where the parameters p are linearly dependent and come from prescribed boxes, and the sets of solutions (defined in various ways) which have linear boundary. One fundamental problem is to compute a box being inside a parametric solution set. We first consider parametric tolerable solution sets (being convex polyhedrons). For such solution sets we prove that finding a maximal inner box is an NP-hard problem. This justifies our exponential linear programming methods for computing maximal inner boxes. We also propose a polynomial heuristic that yields a large, but not necessarily the maximal, inner box. Next, we discuss how to apply the presented linear programming methods for finding large inner estimations of general parametric AE-solution sets with linear shape. Numerical examples illustrate the properties of the methods and their application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.