Abstract

Mitochondria serve as a platform for innate immune signaling transduction, and mitochondrial antiviral signaling protein (MAVS) is essential for interferon-β (IFN-β) production and innate antiviral immunity against RNA viruses. Here, we identified zinc finger-containing ubiquitin peptidase 1 (ZUFSP/ZUP1) as a MAVS-interacting protein by using proximity-based labeling technology in HEK293T and found it could act as a positive regulator of the retinoic acid-inducible gene-I (RIG-I)-like receptors(RLRs), including RIG-I and interferon-induced helicase C domain-containing protein 1 (MDA5). ZUFSP deficiency markedly inhibited RNA virus-triggered induction of downstream antiviral genes, and Zufsp-deficient mice were more susceptible to RNA virus infection. After RNA virus infection,ZUFSP was translocated from cytoplasm to nucleus and interacted with chromatin remodeling complex to facilitate the opening of IFN-stimulated gene (ISG) loci for transcription. This study provides a critical mechanistic basis for MAVS-regulated chromatin remodeling to promote interferon signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.