Abstract

The reflective capabilities of rewriting logic and their efficient implementation in the Maude language can be exploited to endow a reflective language like Maude with a module algebra in which structured theories can be combined and transformed by means of a rich collection of module operations. We have followed this approach and have used the specification of such a module algebra as its implementation, including a user interface and an execution environment for it. The high level at which the specification of the module algebra has been given makes this approach particularly attractive when compared to conventional implementations, because of its shorter development time and the greater flexibility, maintainability, and extensibility that it affords. We explain the general principles of the reflective design of the module algebra and its categorical foundations, based on the institution-theoretic notion of structured theory and morphisms and colimits for such theories. Based on such foundations, we then explain the categorical semantics of Maude’s parameterized theories, modules and views and their instantiation, and the reflective algebraic specification of the different module and view operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.