Abstract

ABSTRACT: The use of machine vision to recognize mature pomegranates in natural environments is of major significance in improving the applicability and work efficiency of picking robots. By analyzing the color characteristics of color images of mature pomegranates under different illumination conditions, the feasibility of the YCbCr color model for pomegranate image recognition under different illumination conditions was proven. First, the Cr component map of pomegranate image is selected and then the pomegranate fruit is segmented by the kernel fuzzy C-means clustering algorithm to obtain the pomegranate image. Contrast experiments of pomegranate image segmentation under different illumination conditions were then performed using the proposed kernel fuzzy C-means clustering algorithm, the fuzzy C-means clustering algorithm, the Otsu algorithm and the threshold segmentation algorithm. Results of the experiments verified the effectiveness and superiority of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.