Abstract
Square matrices over a relation algebra are relation algebras in a natural way. We show that for fixed n, these algebras can be characterized as reducts of some richer kind of algebra. Hence for fixed n, the class of n × n matrix relation algebras has a first–order characterization. As a consequence, homomorphic images and proper extensions of matrix relation algebras are isomorphic to matrix relation algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.