Abstract
Matrix metalloproteinases (MMPs) are a family of functionally related zinc-containing enzymes that denature and degrade fibrillar collagens and other components of the extracellular matrix. Myocardial extracellular matrix remodelling and fibrosis regulated by MMPs are believed to be important contributors to the progression of heart failure. The role of MMPs in cardiac fibrosis and the progression of heart failure, along with the possibility of halting the progression of heart failure by modulating extracellular matrix remodelling are important issues under intense study. MMPs are increased in the failing hearts of both animal models and patients with heart failure. MMP inhibition may therefore modulate extracellular matrix remodelling and the progression of heart failure. It is a great advantage that various MMP inhibitors have been developed initially for the treatment of cancer, arthritis and other diseases believed to be associated with increased MMP activity. Several preclinical studies have shown that treatment of heart failure in animal models with MMP inhibitors results in less collagen matrix damage, favourable extracellular matrix remodelling, and improved cardiac structure and function. The results suggest that modulation of MMP activity can prevent myocardial dysfunction and the progression of heart failure through alterations in the remodelling process of extracellular matrix and the left ventricle. Although these promising results suggest potential benefits of MMP inhibition for human heart failure, no clinical data evaluating MMP inhibitors in heart failure have been reported. As the preclinical evidence continues to grow and the potential of MMP inhibition for the treatment of heart failure continues to unfold, MMP inhibition may prove to be an effective treatment for heart failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.